The powdered material-based 3D printer market was evaluated at US$708.563 million for the year 2025 and is projected to grow at a CAGR of 25.10% to reach a market size of US$2171.026 million by the year 2030.
Powder 3D printing is a prevalent method of additive manufacturing. Unlike FDM printers, which can usually only print with thermoplastics, powder-based printers can handle a broad range of materials, including plastic polymers, metals, silica, etc., making them highly versatile. Powder-based printers are known to have high levels of accuracy and can handle complex and smaller prints with ease, making them a lot more predictable.
Recent advancements in the powder printing industry, such as the Sinterit Lisa X, which has been termed the most prominent and fastest compact printer, help in driving the market. Another release by 6K Additive portrays their new Unimelt powder printing process, showing the use of 91% less energy during production.
The President of 6K Additive calls it a revolutionary step in developing environment-friendly printers. Because of their robustness, abrasion resistance, and enhanced durability, polyamide powder materials are also expected to develop significantly in the medical device manufacturing industry. However, powder-based prints are less dense than objects manufactured with injection moulding and are prone to shrinking and distortion. Powder-based prints also require a lot of post-processing and refinement since the print that comes out of the printer is usually coarse and rough.
Powder-based 3D printing techniques are known for their versatility and economic nature. Due to the advancements in 3D powder printing, the costs of materials have gone down over the years. This has resulted in more efficient printing technology.
Glass is an essential material in a wide range of high-tech applications. Traditional glass shaping procedures are generally time-consuming, energy-intensive, and soon approach their limits for small and complex components. A new technology based on so-called glassomer materials developed by Kotz-Helmer and Rapp at the University of Freiburg's Department of Microsystems Engineering (IMTEK) in collaboration with the University of California at Berkeley in the United States has developed a novel process that can be used to quickly and precisely produce tiny components from transparent glass using micro 3D printing. Glassomer materials are made out of glass powder mixed with a unique plastic binder that allows the glass to be processed like plastic. In only a few minutes, this technique can print glass structures as tiny as 50 micrometres around the thickness of human hair. Components for sensors and microscopes are two examples of possible uses of this technology.
Sandvik has announced the release of 3D-printed cemented carbide components as part of its additive manufacturing strategy. Sandvik is currently providing its 3D printed cemented carbide on a commercial scale, based on a unique powder obtained by Sandvik's patented method. It's also worth noting that the capacity to 3D print cemented carbide significantly reduces the manufacturing time. Manufacturing components used to take six to twelve months, but today it just takes a few weeks. Metal cutting, agriculture, food, and oil and gas are just a few sectors that employ cemented carbides.
Powdered Material Based 3D Printer Market Segmentation